

Roll No: Subject Code: KAS101T

Printed Page: 1 of 2

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

Time: 3 Hours Total Marks: 100

Note: Attempt all the sections. If require any missing data, then choose suitably.

Section A

1. Attempt all questions in brief:2 x 10 = 20

Q.N.	Question	Marks	СО
a.	Differentiate between inertial and non- inertial frames.	2	1
b.	Show that the rest mass of a photon is zero.	2	1
c.	Write the similarities and dissimilarities between conduction and	2	2
	displacement current.		
d.	Define the Poynting vector and write its unit.	2	2
e.	State the Wien's displacement law.	2	3
f.	Distinguish between modified and unmodified x-rays.	2	3
g.	The light rays from two independent bulbs do not show interference.	2	4
	Give the reason.		
h.	State the Rayleigh criteria of resolution.	2	4
i.	What is an optical fibre? How does a light signal propagate through	2	50
	it?		6.
j.	Write the essential requirements for the laser action.	2)5

Section B

2. Attempt any three of the following:

 $3 \times 10 = 30$

Q.N.	Question	Marks	СО
a.	Show that $E^2=p^2c^2+m_0^2c^4$	10	1
b.	Find the skin depth δatafrequencyof3.0x 10 ⁶ Hzinaluminiumwhere	10	2
	σ =38.0 x 10 ⁶ S/m and μ _r =1.		
c.	An electron is bound in one dimensional potential box which has	10	3
	width 2.5×10^{-10} m. Assuming the height of the box to be infinite,		
	calculate the lowest permitted energy values of the electron.		
d.	White light is incident on a soap film at an angle Sin-1 (4/5) and	10	4
	the reflected light is observed with a spectroscope. It is found		
	that two consecutive dark bands correspond to wavelengths		
	6.1×10^{-5} cm and 6.0×10^{-5} cm. If the refractive index of the film is		
	4/3, calculate the thickness.		
e.	A communication system uses a 10 km fiber having a loss of	10	5
	2.5dB/km. Compute the output power if the input power is 500μW.		

Roll No: Subject Code: KAS101T

BTECH	
(SEM I) THEORY EXAMINATION 2021	-22
ENGINEERING PHYSICS	

Section C

3. Attempt ant one of the following:

1 x 10 = 10

Printed Page: 2 of 2

Q.N.	Question	Marks	СО
a.	State the postulates of special theory of relativity and derive the	10	1
	Lorentz transformation equations. When Lorentz transformation		
	equations get reduced to Galilean transformation equations?		
b.	State and prove the velocity addition theorem. Show that the	10	1
	theorem is consistent with the Einstein's second postulate.		

4. Attempt any one of the following:

1 x 10 = 10

Q.N.	Question	Marks	СО
a.	Establish the e-m waves' equations in free space and solve them to	10	2
	show that they travel with the speed of light in free space and are		
	transverse in nature.		
b.	State and prove the Poynting theorem. Show that E/H = 377 Ohm.	10	2

5. Attempt any one of the following:

1 x 10 =10

Q.N.	Question	Marks	co o
a.	What is the Planck's theory of black body radiations? Obtain an	10	3
	expression for the average energy of the oscillators and derive the		, '
	Planck's radiation law.		, ,
b.	Write the Schrodinger's wave equation for a particle in one-	10	3
	dimensional box and solve it to obtain the eigen values and eigen		
	functions.		

6. Attempt any one of the following:

 $1 \times 10 = 10$

Q.N.	Question	Marks	СО
a.	What do you mean by a wedge-shaped film? Discuss the interference	10	4
	due to it and obtain the expression for the fringe width.		
b.	Discuss the formation of Newton's rings. Show that the diameters of	10	4
	the bright rings are proportional to the square root of odd natural		
	numbers.		

7. Attempt any one of the following:

1 x 10 = 10

Q.N.	Question	Marks	СО
a.	What do you mean by acceptance angle and numerical aperture?	10	5
	Derive the expressions for acceptance angle and numerical aperture.		
b.	What do you understand by the stimulated emission? Discuss the He-	10	5
	Ne laser by giving its construction and working. How He-Ne laser is		
	superior to the Ruby laser?		

Physical Constants:

Rest mass of electron m_o = 9.1 x 10^{-31} kg, Speed of light c = 3 x 10^8 m/s Planck 's Constant h = 6.63 x 10^{-34} J-s, Charge on electron e = 1.6 x 10^{-19} Coulomb